TEMPERATURE FIELD OF PARALLELEPIPED WITH
VOLUME ENERGY SOURCES AND INTERNAL CONVECTION

G. N. Dul'nev and A. I. Kaidanov UDC 536.23:536.25

Equations are formulated which describe the transfer of heat from a solid core in a paral-
lelepiped to a cooling fluid passing through the parallelepiped. Kantorovich's method of
reduction to ordinary differential equations is used to obtain an approximate solution of the
equations.

A problem frequently encountered in practice is that of the transfer of heat from a system of spa-
tially distributed objects to a flow of cooling fluid (gas). Such problems crop up, in particular, in the
determination of the temperature fields in radio-electronic devices, which have a relatively large number
of components mounted with a substantially uniform density. In many cases (in radio-electronic apparatus,
for example) the system to be cooled is situated in a container and is itself a more or less uniform genera-
tor of energy. The flow of cooling fluid is directed along one of the axes of the parallelepiped. If the com-
ponents of the system are much smaller than the overall size of the block on which they are mounted, the
block can be regarded as approximately uniform and can be described by means of certain effective param-
eters (thermal conductivity, specific heat capacitance, heat-source density, volume coefficient of internal
convection, and so on). Methods are known [1] by means of which various types of distributed systems can
be reduced to a uniform block with an effective thermal conductivity and an effective heat-source density.
The formulas for the effective thermal conductivity take account of heat transfer by radiation.

The volume coefficient of heat transfer (ay) is either known directly [2] or can be expressed in

terms of the known surface coefficient of heat transfer (ug)
SV
GV = O'S-T/v .

The effective parameters of the equivalent uniform block can thus be determined in many practical
cases. Analysis of the temperature field of the distributed system then reduces to solving a set of two
equations, the thermal conductivity equation of the block with volume convection taken into account, and
the block-coolant heat-transfer equation
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In the subsequent discussion we shall assume that u = const; g = const.

Equations (1a) and (1b) constitute a closed set of differential equations for 4 and 4¢. If the heat
transfer from the parallelepiped to the surrounding medium follows Newton's law with the heat-transfer
coefficients being identical in pairs at opposite faces, and if the temperature of the cooling fluid at the
inlet equals the temperature of the surrounding medium, the boundary conditions of the problem can be
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written in the form:
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As far as we are aware no precise solution of the above problem has been published in the literature.

We aim to solve the problem by Kantorovich's method of reduction to ordinary differential equations
[3], which is sufficiently accurate for engineering calculations. The error associated with the first ap-
proximation of this method is comparable with the error in the determination of the thermophysical param-~
eters A, o and with the error involved in making the transition to an equivalent uniform block. Conse-
quently, for the present purposes there is no point in trying to find solutions better than the first approxi-
madtion.

We seek the functions 4 and 4 ¢ in the form:

n n
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Here Pyi (y) and quZl(z) are chosen so as to satisfy the requirements of completeness {3] and boundary
conditions (2a); the functions le(X), 8xi x) are found from the orthogonality conditions
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Restricting the discussion to the first approximation and dropping in future the indices character-
izing the number of the approximation, we can write

(52
w = fx(Pych; ﬁ‘f = &Py P, )
If @5 (j =y, z) is given in the form of a square-law parabola, we have from boundary conditions (2a) that

¢;=14+2B,~P). i=u 2 (5b)
and consequently
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Utilizing (3) and writing
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Insertion of (5a) into (1b) gives ,
Fo= g+ S5 (7b)
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Elimination of the function fyx between Eqs. (7a) and (7b) gives the following final differential equation for gy:
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The general integral of the linear differential equation (8a) has the form
% (k) 9+ 2 (9)
8= = My exp (kyx) + M, exp (kyx) + Mz exp (kyx) + o

0

where M;, M,, M are arbitrary constants, determined from the boundary conditions; k;, kg, k; are the
roots of the characteristic equation

(10a)
B4 Ck*—Ck—Cy= 0.

We introduce the new variable (10b)

C
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and rewrite (10a) in the form [4]
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The formulas for k will depend on the signs of &, 8, and of the discriminant d =8 + €2, Clearly, from (10d)
we have always that

B <0.

Determination of the signs of € and d requires a more complex analysis. On substitution of expressions
(8b) into (10d) we obtain after some manipulation
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We note that A is independent of Biy and Q and that
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Consequently, for the limiting cases ¢y — 0, © or u — 0, = we have that
d<0, e>0. (12)
Determination of the signs of d and ¢ is troublesome in the case of intermediate values of ay, u

For convenience the rest of the discussion will be carried out with a specific class of objects in
mind. For example, for radio-electronic apparatus the parameter values are such that

Bi, > 54

so that inequalities (12) are satisfied. We then have [4]:
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For simplicity we introduce the notation:
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when (9) and (7b) can be rewritten:
h= Piexp(kl)?) +Pzexp(k2;) + Pjexp (k3;) +1,
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To determine the constants Py ,2,3 We make use of the boundary conditions. From (2h) in conjunction with
(5a) and (14) we obtain: h(x = 0) =0, from which
P, 4+ Py+Py=—1. (15a)

From conditions (2a) in conjunction with (5a), (14), and (9b) we also have
Pl[ exp (k,) ( 1+ ﬁ) (B, + 2Bix)] +P [exp(k2) (1 + =2 )(k -+ 2Bi )]

+ P, [exp (ky) (1 + )(k + Qle)] = —9Bi; (15b)

[(1 + )(k —2B1x)] {(1 + =2 )(k —2le)} H1+ )(k —2B1x)} = 2Bi,. (15¢)

Equations (15a, b, ¢) determine the constants P;, Py, Ps.
In a number of cases it is of interest to determine the mean temperature

1

‘:jfdh%(w )[exp<k>—11+ (1+ )[exp(k)—lw ( %)[exp(ks)—lwl; (16a)
3

f Es% lexp (% )—1]+~——[exp(k)~—1]+ 3[exp(k3)—1 (16b)

2
If the cooling fluid moves through natural convection, the ratio of the difference between the mean block

and mean fluid temperatures to the mean block temperature is an important parameter upon which the total
hydraulic pressure head of the flow depends. This ratio is given by:
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where D and C, are given by formulas (8b); ¢ Py, Py by formulas (5b); Ly, Ly by (6b); h, F by (9a b) _}-1 I
by (16a, b); the exponents k1,2,3 by (13), (10d), (8b); the constants P1’2,3 by (15a, b, ¢); by (1c); vy (2a)
and Biy by (11d).

The above formulas were used to construct a program for temperature field calculations on the Minsk-
2 digital computer. Calculations were carried out for a radio-electronic device of cassette construction.
The satisfactory agreement which was obtained between computation and experiment enables the above
method to be recommended for the study of distributed systems with internal convection. The limits of
applicability of the formulas are set by the assumptions made in their derivation.

NOTATION
avy, ag are the volume and surface heat-transfer coefficients;
A is the coefficient of thermal conductivity of cooling fluid;
Sy is the total surface area of elements of block;
A% is the volume of elements;
Ly, Ly, Ly are the lengths of sides of parallelepiped in directions of x, y, z axes;
q is the density of volumetric energy sources;
Uy, Ay, Ay are the coefficients of thermal conductivity of anisotropic body in x, y, z directions;
Bi is the Biot number;
ty(x, v, 2) is the temperature of block at point (x, y, z);
te is the temperature of medium surrounding block;
tex, vy, 2) is the temperature of cooling fluid at point (x, y, 2z);
is the mean velocity of fluid flow in x direction;
X =%/ Ly
_ /Ly'l
z =7/ Liy are the relative coordinates;
a is the coefficient of heat transfer to medium outside parallelepiped.
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